Learning effective brain connectivity with dynamic Bayesian networks

نویسندگان

  • Jagath C. Rajapakse
  • Juan Zhou
چکیده

We propose to use dynamic Bayesian networks (DBN) to learn the structure of effective brain connectivity from functional MRI data in an exploratory manner. In our previous work, we used Bayesian networks (BN) to learn the functional structure of the brain (Zheng, X., Rajapakse, J.C., 2006. Learning functional structure from fMR images. NeuroImage 31 (4), 1601-1613). However, BN provides a single snapshot of effective connectivity of the entire experiment and therefore is unable to accurately capture the temporal characteristics of connectivity. Dynamic Bayesian networks (DBN) use a Markov chain to model fMRI time-series and thereby determine temporal relationships of interactions among brain regions. Experiments on synthetic fMRI data demonstrate that the performance of DBN is comparable to Granger causality mapping (GCM) in determining the structure of linearly connected networks. Dynamic Bayesian networks render more accurate and informative brain connectivity than earlier methods as connectivity is described in complete statistical sense and temporal characteristics of time-series are explicitly taken into account. The functional structures inferred on two real fMRI datasets are consistent with the previous literature and more accurate than those discovered by BN. Furthermore, we study the effects of hemodynamic noise, scanner noise, inter-scan interval, and the variability of hemodynamic parameters on the derived connectivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning functional structure from fMR images.

We propose a novel method using Bayesian networks to learn the structure of effective connectivity among brain regions involved in a functional MR experiment. The approach is exploratory in the sense that it does not require an a priori model as in the earlier approaches, such as the Structural Equation Modeling or Dynamic Causal Modeling, which can only affirm or refute the connectivity of a p...

متن کامل

Hierarchical disruption in the Bayesian brain: Focal epilepsy and brain networks

In this opinion paper, we describe a combined view of functional and effective brain connectivity along with the free-energy principle for investigating persistent disruptions in brain networks of patients with focal epilepsy. These changes are likely reflected in effective connectivity along the cortical hierarchy and construct the basis of increased local functional connectivity in focal epil...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods

Introduction: Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods. Methods: We studied three groups o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 2007